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CORRELATION

AND

MACHINE CALCULATION

The rapid extension during recent years of the ideas of simple
correlation has imposed their use upon many scientists not
trained in the mathematical theory underlying them. The pres-
ent trend in all biological sciences, as well as in economics and
psychology, is still further to extend the use of correlation,
broadening its scope to include the associations among more than
two variables. One object of this bulletin is to present in simple,
untechnical language some explanation of the meaning and uses
of the various correlation coefficients, simple, partial and mul-
tiple.

The second and principal object of the bulletin is to set forth
explicit directions for the use of the usual commercial forms of
calculating machines, either key-driven, such as the Comptometer
and Burroughs Calculator, or erank driven, such as the Monroe
or Marchant, in finding correlation coefficients or related con-
stants. Aecording to the usual procedure, where the arithmetic is
done mentally, the use of the correlation table, or double entry
table, is almost indispensable. The advent and prevalent use of
calculating machines, however, make practicable a return to
simpler and more direct methods of reckoning. These machines
are admirably adapted to the caleulation of all the correlation
constants with speed and precision.

For extensive data where the number of observations runs into
the thousands, punched cards should be used with sorting and
tabulating machines, such as the Hollerith machines. The aver-
age research worker, however, who is dealing with less than 500
cases, will probably find the methods herein set forth well
adapted to his use.

For the benefit of those readers who are not familiar with the
ideas of simple correlation between two variakles, we skall pre-
sent them very briefly in the following paragraphs.

PART 1. SIMPLE CORRELATION.

A simple correlation coefficient, r, between two variables is
a measure of the degree to which they tend to be associated or to
move together. If they should move in the same direction, keep-
ing perfect step all the way, r is so designed as to take the value,












SUMMARY OF FORMULAS AND CALCULATIONS

TABLE 2.

n=25
SAX =—189,533

(SA)Myx — 185,713

SAX — (3A)My

Mx = $198.20
3X?=1,075,817

(3X)Mx
3X2 — (2X)Mx
| v =2X*— (2X)Mx

I

3X =—4,955

35,119

M, =37.48bu.
3A?= 35,461

SA =937

(ZA)M,
SA? — (SA)M,
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3,820

r=.6747

93,736

306.16
$61.23

ox

342
18.49
3.70 bu.

— (3A)M,
oa

Sixth. Subtract the numbers in Line
4 from those in Line 3 as indicated in
Table 2.

Seventh. Extract the square roots of
the first two results just obtained; thus,

VAT = (SA)M, = V382 = 18.49
V3IXT = (3X) My = /93,736 — 306.16

Square roots may be caleulated on the
machine or by the wusual arithmetic
methods, but a table of squares and
square roots (such as Barlow’s) gives
the results much more rapidly.

Eighth. Multiply the two results just
obtained to get the denominator of the
fraction in the formula for r;

V 3A% — (SA)M, X v 2X? — (3X)Mx
=18.49<306.16=5,660.9

Ninth. To obtain r, divide as in-
dicated in the formula;

3,820

5,660.9

thus completing the caleculation of .
However, for later use we shall add to
Table 2 the following:

Tenth. Compute the standard devia-
tion of the A’s thus,

VAT — (SA)M, 1849

A —
Vn 5
=3.70 bu. per acre

Also, for the standard deviation of the
X'’s,

r= =.6747

VIXEZ (3X)Mx  306.16

Vo 5
= $61.23 per acre

ox =
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For the benefit of the novice in the use of a calculating ma-
chine, it is suggested that sub-totals be recorded frequently when
a long column is being added, especially if multiplications are
being done at the same time. This helps in checking the results.
An experienced operator will check his work 49 times out of 50
the second time over. The following gives some idea of the speed
that may be maintained by fairly proficient operators in carry-
ing through the various operations in the problem just com-
pieted:

APPROXIMATE TIME OF CALCULATIONS

time 1h
& Ot
R, || i
. . 8333 of
Time of operations in seconds FESES || check-
© o
_ BE g cal--
sA | =X | sA? | Xz |3AX Sons
Key
Driven 15 20 45 | 100 90 Tl 5
Machine
Crank
Driven 45 55 115 145 140 12 10
Machine

It should be distinetly understood that these figures are given
merely for the guidance of the novice, and have little or no bear-
ing on the relative merits of key and erank driven machines.
Each type of machine has peculiar advantages, and the type to
be used in any given office depends upon many circumstances be-
sides the speed attained in the calculation of this particular
problem.

In the following sections will be set forth the meaning and
uses of simple correlation coefficients, using the one just ealculat-
ed as an illustration. The beginner is warned not to attempt a too
literal interpretation. Although perfect correlation is measured
by 1.00, the r=—.67 (we shall earry only the first two decimal
places in this discussion) cannot be thought of as a percent.
There is no absolute scale on which we can say that one correla-
tion is high and another low.

RELIABILITY OF THE CORRELATION COEFFICIENT
As is the case with all statistical constants, the reliability of a
correlation coefficient is indicated by the smallness of its stand-

ard deviation. Denoting the standard deviation of r by the
symbol, oy, the formula is,

v




PART I—SIMPLE CORRELATION 11

1—1r2
oy =
A2 1
In our example
1— (.67)2
o=——=\11
V25

10 interpret this in connection with our r of .67, we first calcu-
late the range from (.67 —.11) to (.67 .11); that is, the
range from .56 to .78. We then say (from theoretical considera-
tions) that if these data were collected over and over from simi-
larly located counties the chances are that about 68% of the
resulting r’s would lie between .56 and .78. Of the other 32%,
about half would lie below .56 and the remainder above .78.

If the reader is more familiar with the idea of ‘‘probable de-
viation’’ (probable error) then he may use the formula,

E,=.6745 ,
V51
which gives a probable deviation of .07 in our example. The
corresponding range is now from .60 to .74 (.67 == .07) and the
interpretation is that in future experiments similarly conducted
we may expect about 50% of the resulting r’s to lie within
this range.

It is now evident that only the first two decimal places in r
have statistical significance. As will appear later, the arithmetical
operations are standardized by carrying the caleculations to four
places of decimals, but this is done merely for convenience in
verifying the results. For an excellent short statement as to the
number of significant figures, see Truman L. Kelley, ‘‘ How Many
Figures are Significant?’’ in Science, Vol. LX, No. 1562, page
524, Dec. 5, 1924.

It is perhaps simpler to calculate a range within which all
r’s would be likely to lie. 'While certainty is unattainable, we
may say that a range of twice the standard devation will usually
contain above 95% of similarly obtained r’s, while a range of
three times the standard deviation will probably contain more
than 99% of them. The first of these ranges is sufficient for
ordinary practical work, while the second would be accepted for
most scientific work. In our example, 20, =2 X .11=.22. We
may therefore reasonably expect 95% of similarly obtained r’s
to lie between .45 and .89 (.67 = .22). Since 30, =.33, the
range .67 + .33 (from .34 to 1.00) will probably contain all simi-
larly calculated r’s.

It is now easily understood why reliability is measured by the
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smallness of the standard deviation. The smaller the range neces-
sary to include 95% of all similarly calculated r’s, the more
likely it is that such r’s will closely approximate the one already
obtained. Study of the formula for o. will reveal that two ele-
ments enter into the determination of its smallness; first, the
largeness of r itself, and second, the largeness of the number of
observations. If, for example, our r had been .77 instead of
.67, its standard deviation would have been

1— (.77)2
0p = e = 08
5

and the smaller range from .61 to .93 (.77 =2 < .08) would
be likely to embrace 95% of such r’s. On the other hand, if
the original r=—.67 had been obtained from 100 observa-
tions instead of 25, the corresponding standar1 deviation would
have been

1— (.67)2
op=———=.055
V100

just half of the actual value in the given example. The cor-
respondingly smaller range from .56 to .78 (.67 == 2 .055)
would then contain 95% of such r’s.

The student who will experiment with the formula, testing
for reliability r’s of various sizes and depending upon differ-
ent numbers of observations, will soon gain a real appreciation
of the way in which their reliability depends upon these elements.

THE REGRESSION EQUATION

The most practical use of r 1is in the calculation of the equa-
tion of the ‘‘regression line’’, whose meaning and use will now
be discussed. Fig. 1 shows the familiar dot diagram, or scatter
diagram, of the data of Table 1. One dot, properly located,
represents each pair of values in the table. The fact that A and
X are correlated is shown qualitatively on this diagram by the
distribution of the dots in a band and not merely at random. The
regression line shows the trend of this band of dots. It repre-
sents the best average position of the dots that statistical study
is able to furnish. The line is plotted on the diagram and the
estimated land values of Table 3 are calculated by means of the
‘‘regression equation’’ (in which the symbol X is read ‘‘esti-
mated value of X'’),

ox

-}T=Mx-|—r>< (A—M,)

oA
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FIGURE 1. THE REGRESSION LINE
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If we substitute in this formula the values computed in our ex-
ample, we have, '

. 61.23
X =198.20 4 .6747 X —— (A — 37.48),
3.70

or, performing indicated arithmetical operations,

X =11.17TA — 220.45

This means that for a particular corn yield, say A — 38 bu. per
acre, the corresponding estimated land value will be 11.17 X 38
— 220.45 = $204.01 per acre.

Continuing the calculations as above of estimated values from
actual corn yields, we have the values appearing in Table 3.
(The number of cents is not recorded as it has no statistical sig-
nificance.)

There are two counties, Kossuth and Lyon, whose average corn
yield is 38 bu. per acre. It will be observed that the correspond-
ing estimated land value of approximately $204 per acre agrees
closely with the actual land value of Kossuth county, but is $75
too low for Lyon county. The estimated land value is a kind
of average value (not the arithmetic mean) corresponding to
this particular figure for corn yield, but taking account of the
peculiarities not only of these two counties, but also of all the
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TABLE 3. LAND VALUE ESTIMATED FROM CORN YIELD

ActualdAver- Estimated
s age land value Errors of
Observation per acre, land value Estimate
Jan. 1, 1920 per acre
1. Allamakee $ 87 $226 —139
2. Bremer 133 182 — 49
3. Butler 174 159 15
4. Calhoun 286 238 47
6. Carroll 263 216 48
6. Cherokee 274 249 26
7. Dallas 235 226 9
8. Davis 104 126 — 22
9. Fayette 141 182 — 41
10. Fremont 208 159 49
11. Howard 115 116 ..
12. Ida 271 226 45
13. Jefferson 163 193 — 30
14. Johnson 193 238 — 46
15. Kossuth 203 204 — 1
16. Lyon 279 204 %5
17. Madison 179 159 20
18. Marshall 244 282 — 38
19. Monona 166 159 6
20. Pocahontas 257 226 31
21. Polk 252 238 14
22. Story 280 249 31
23. Wapello 167 170 — 3
24. Warren 168 148 20
25. Winneshiek 115 182 — 67

twenty-five counties. To the student of statistics, the case of
Lyon county is the more interesting and important. He imme-
diately asks, ‘“What peculiarity has this county that makes its
land value diverge so greatly from the estimated or average
value?’”’ This is exactly the question whose answer must be
found in the later chapters on multiple correlation. Corn yield
is only one of the many characteristics entering into the deter-
mination of land value. An examination of Table 6 will show
that whereas Lyon county has close to the average corn yield,
its percentages of farm land in corn and small grain, and its
number of brood sows per thousand acres are all much higher
than average. Multiple correlation is a scheme for taking into
account associations of all these elements with land value.

We now come to the real problem in any statistical study—how
to interpret the results. As indicated above, one of the most
fruitful sources of information is the study of the cases in which
the estimated values diverge most widely from the actual land
values. It should be noticed that these ‘‘errors of estimate’’ are
positive or negative aceording as the estimated value falls short
of the actual value, or exceeds it. We have just discussed the
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largest of the positive errors of estimated land value, that of
Lyon county ; let us now study the largest of the negative errors.
Allamakee county has a land value of $139 less than that pre-
dicted on the basis of corn yield alone. Referring again to Table
6, we find that although this county has a high corn yield per
acre, its percentages of land in corn and small grains are among
the lowest of the 25 counties. It is obvious that we shall have
to include one or both of these elements in our study.

In order to help the reader to get a correct concept of the
kind of averages these estimated values are, we call his attention
to the following facts:

1. The sum of the positive errors of estimate (actual values
minus estimated values) is equal to the sum of the negative er-
rors; that is, the algebraic sum of all the errors is zero. Hence,
while any one of these estimated (average) values may deviate
considerably from the actual, they are so adjusted that the alge-
braic sum of all such deviations is the least possible.

2. The sum of the squares of these errors of estimate is less
than it would be if any other linear regression equation had
been used. Since the ‘‘standard error of estimate’’ (to be ex-
plained later) is calculated directly from such sum, it follows
that the standard error of estimate is less than any other root-
mean-square average of such errors of estimate.

All this means that the regression line is drawn through the
dots in such a way that the algebraic sum of the vertical dis-
tances of all the dots from the line is zero, and the sum of the
squares of such distances is a minimum.

An interesting interpretation of the meaning of r ean now
be introduced. It is not only the correlation coefficient between
corn yield and land value, but is also the correlation coefficient
between actual land value and estimated land value. That is,
if r were calculated for the two columns of land values in Table
3, its value would be .67. It is therefore in a very definite sense
a direct measure of our success in estimation.

It should be clearly understood that there are two regression
lines in simple correlation. The one just discussed is known as
the regression of land value on corn yield; that is, the regression
of X on A. If we should wish to estimate average corn yield
from given land values we should have to use the formula for
regression of A on X, as follows:

oA

A=Ma+rX — (X —My)

ox
Using the values computed in our example, this reduces to
A =.0408X + 29.4
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This represents a different line from that shown in Fig. 1; and
any particular land value together with the estimated yield as
computed from this last formula constitute a different pair of
values from those found in Table 3. Only in the case of perfect
correlation (r=1) would there be perfect agreement between
the pairs of values calculated from the two regression formulas.

THE STANDARD ERROR OF ESTIMATE

The second practical use of r is to enable us to calculate easily
an average of the differences between the actual and estimated
land values; that is, an average of the errors of estimate given
in the last column of Table 3. As already indicated, the mean
of these errors of estimate is zero, because their algebraic sum
is zero. The average which is generally used is the root-mean-
square average known as the ‘‘standard error of estimate’’. It
might be obtained by squaring each of the numbers in this last
column of Table 3, adding such squares, dividing the sum by 25
(the number of observations) and extracting the square root of
the quotient. Practically, however, the same result (which we
shall designate by ox..) is obtained by the use of the formula

ox.a=ox V1 —1r?

Substituting our values, we find that the standard error of esti-
mated land values is

ox.a=61.23 V1 — (.6747)2=61.23 XX .738 = $45.19 per acre

It is to be observed that this standard error of estimate is
73.8% of the standard deviation, ox. In other words, the stand-
ard deviation of predicted values from actual values is only
73.8% of the standard deviation of actual values from their
mean.

Since this standard error of estimate is the standard deviation
of the differences between actual and estimated land values, it
has the usual interpretation of standard deviations (see page
11); that is, about 68% of the errors lie in the range from
— $45.19 to -+ $45.19. Furthermore, approximately 95% of
the errors are expected to lie in the range from — $90.38 to
—~+ $90.38; and usually all the errors are included in the range
from — $135.57 to 4 $135.57. An examination of the actual er-
rors will convince the reader of the close agreement of these
theoretically computed ranges with the facts.

A somewhat different interpretation of the standard error of
estimate, ox.a, may make its meaning and importance clearer.
If we are asked to estimate the average land value of one of our
25 counties knowing nothing of its average corn yield, we shall
have to be satisfied with the following answer; it is more likely
to be worth about $198.20 per acre (the mean value, Mx) than
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any other amount, and the standard error of all such estimated
values is $61.23 per acre (the standard deviation, ox). If, howev-
er, knowing that the r between land value and corn yield is .67,
we are given the additional information that the corn yield of a
particular county is 38 bu. per acre, then we are able to better
our estimate in two respects. We are able to say from the re-
gression formula that the land value is more likely to be around
$204 per acre than any other value, a much better estimate than
before; and we are also able to say that the standard error of
such estimates is now only $45.19 (ox.a), or only 73.8% of ox,
thus indicating greater reliability in the estimations,

The question arises—how much better is an r of .6 than one
of 4?7 What does the relative size of the r’s mean? To answer
this, we say that if r=.6, then

oxa=oxV 1— (.6)2=—.8 ox or 80% of ox,
while if r= 4, then
OX.A = 0% '\/1 - (.4)2=.917 ox or 91.7% of ox.

Thus, an r of .6 reduces the standard deviation of estimated
values by 20%, whereas an r of .4 reduces it by only 8.3%. The
following table gives the percentages by which different r’s re-
duce the standard deviations of estimated values:

TABLE 4. REDUCTION OF STANDARD DEVIATION

Pct. Reduc- Pct. Reduc- . Pct. Reduc-
tion of r tion of r tion of
r Standard Standard Standard
Deviation Deviation Deviation
.05 1% .50 13.49% .92 60.8%
.10 5% .55 16.5% 94 65.9%
.16 119 .60 20.09% 95 68.8%
.20 2.0% .65 24.0% .96 72.09%
.25 3.2% .70 28.6% 97 15.7%
.30 4.6% 75 33.9% .98 81.0%
.35 6.3% .80 40.0% 99 85.9%
.40 8.3% .85 47.3% .999 96.5%
.45 10.7% .90 56.4% 1.000 100.09%
or prediction perfect

From this table it is possible to say that for estimating pur-
poses an r of .8 reduces the standard deviation twice as much
as does an r of .6. Correlations of less than .4 are evidently
practically worthless for estimating purposes because they re-
duce the standard deviation of estimated values by less than&'%.
This table also shows very strikingly why it is that correlation
coefficients cannot be interpreted as percentages.

Beginners almost invariably attach more significance than they
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Bxa + 4146 X .6318 = .6747
Solving: Bxa = 4126
The correctness of the solution may be tested by substitution
in the second equation.
We now ecalculate the ‘‘multiple correlation coefficient’’, de-
noted by the symbol R, by means of the formula

R? = Bxarax + BxsTrsx.
Substituting: R2?=.4126 X< .6747 4 .6318 X .8029 — .7856
Therefore, R=.89

Parenthetically, it may be observed, that while the subscripts
of the r’s may be interchanged, those of the 8’s may not. Thus
Bax does not denote the same number as Bxa. The meaning of
Bax will be explained later.

A second parenthetic observation will be of interest to many
readers. These B’s are the same as the ‘‘path coefficients’’ used
by Sewall Wright in ‘‘Correlation and Causation’’ (Jour. Ag.
Res. Vol. XX, No. 7, pp. 557-575), and the produects, Bxarax and
Bxsrex are his ‘‘coefficients of determinaiion’’.

Before discussing the meaning of R, we shall complete the cal-
culations by computing the constants of the new regression equa-
tion from the formula:

ox gx

(A —M,) + Bxs

A aB

The use of the 8’s is now obvious. They play the same role in
the multiple regression equation as the r’s do in simple regres-
sion equations. Substituting our values for the above symbols,
we find the new estimated value of X to be,

X =Mx + Bxa (B — Mp).

_ 61.23
X =198.20 + .4126 ) —— (A — 37.48) +
3.70
61.23
6318 —— (B —19.52)
. 5.97
or, X = 6.828A -+ 6.478B — 184.16

As the final step in the calculations, we must now find the esti-
mated values of X corresponding to each pair of actual values
of A and B. For example, in Allamakee county, A =40 bu. per
acre corn yield, and B=11% of farm land in small grain. Sub-
stituting in the regression equation, we find the corresponding
estimated land value to be,

X = 6.828 )X 40 + 6.478 X 11 — 184.16 = $160.22 per acre.
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Continuing this process for each county, we get Table 5.

Before discussing the reasons for the more glaring errors of
estimate, we shall return to the subject of the meaning and use
of the multiple correlation coefficient, R. In the first place, R
is the simple correlation coefficient between actual land values
and land values estimated from the regression equation. In other
words, it is precisely the same kind of a measure of our success
in estimating or predicting with two independent variables as
r was a measure of our success with one independent variable
(see page 15). In the second place, just as in simple correla-
tion, R enables us to compute readily the standard error of esti-
mate which, with two independent variables, A and B, is de-
noted by the symbol, ox.as.

The formula is ox.as=ox\ 1 — R?, or in our example,

ox.ap=161.23 V/ 1 — .7856 = 61.23 )X .463 — $28.35 per acre

That is, our value R =—.89 enables us to reduce the standard de-
viation of estimated values to 46.3% of the standard deviation of
the X’s; or in other words, to reduce it by 53.7%. (Compare

TABLE 5. LAND VALUE ESTIMATED FROM CORN YIELD AND
FARM LAND IN SMALL GRAIN

Actual Aver- Estimated
Observation age land [land value per Em';ngfe Esti-
value per acre acre
1. Allamakee $ 87 $160 —173
2. Bremer 133 146 —13
3. Butler 174 171 3
4. Calhoun 285 310 —25
6. Carroll 263 244 19
6. Cherokee 274 252 22
7. Dallas 235 231 4
8. Davis 104 86 18
9. Fayette 141 146 — 5
10. Fremont 208 158 50
11. Howard 115 137 —22
12. Ida 271 238 33
13. Jefferson - 163 159 4
14. Johnson 193 180 13
15. Kossuth 203 231 —28
16. Lyon 279 276 3
17. Madison 179 152 27
18. Marshall 244 246 — 2
19. Monona 165 178 —13
20. Pocahontas 267 . 283 —26
21. Polk 252 238 14
22. Story 280 239 41
23. Wapello 167 158 9
24. Warren 168 158 10
25. Winneshiek 1156 178 —63
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Table 4). We are now likely to find more than 95% (only 90%
in this particular example) of our errors of estimate lying with-
in the comparatively small range from — $56.70 to - $56.70
(= 20x.a8). In the third place, the standard deviation of R is
(as in the case of r)

1—Rz 1—.7856
Or = = =.04

" Vn 5

which means that similarly derived R’s are almost certain to lie
above .80, thus practically always reducing the standard devia-
tion of estimated values more than 40% (see Table 4).

Returning to a consideration of Table 5 we find that the new
estimate of land value in Lyon county is very close to the actual
value, whereas the estimate for Kossuth county is not so good as
before. Kossuth, having about average corn yield and average
land value, is estimated quite closely from corn yield alone; but
since it is close to the highest county in percentage of land in
small grain, the inclusion of the latter variable raises the land
value estimate too much. Other factors will have to be intro-
duced to counterbalance this effect. Land values in Allamakee
and Winneshiek counties, especially in the case of Allamakee,
are better than when only one independent variable was used.
It is still necessary to take into account the fact that these coun-
ties have low percentages of their farm land in corn. Fremont
county is still much above its estimated value; in fact, we have
made a poorer estimate with two independent variables than with
one. This is because of Fremont’s unusually large percentage of
farm land in corn, a characteristic which we shall certainly have
to take into account before our problem is completed. In six
other counties besides Fremont, our newly estimated values are
not so close to actual values as was the case when corn yield
alone was considered. In the other eighteen counties, our esti-
mations are closer to the facts.

PART III.. MULTIPLE CORRELATION—MORE THAN
THREE VARIABLES.

It is quite evident from what precedes that, while we have
made progress in our attempt to analyze the relations between
land value and associated variables, we are still far from a sat-
isfactory knowledge of these relations. We shall complete our
illustrative example by including three more variables, as fol-
lows: average number of improved acres per farm, C; number
of brood sows per 1,000 acres, D ; and percentage of farm land in
corn, E. Table 6 gives the complete data for 25 Iowa counties.

The principles involved in handling more than three variables
are identical with those explained in the three variable problem.
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TABLE 6. DATA FROM 25 IOWA COUNTIES

4] ] )
E @ [~ o
§ 3 g & e 23| ¢ 527
=5 1) Cghk
< TEa|ES ' oQ0o - e
5-2 County 15 guﬁ Egs Bgd §E oo™
n .
23 £55|wSE| o8y |sB8| 2 |385 | E
o4 o8& Iv=2] 758 |Zz8al wd | 588 7]
A | B | c |Dp|E | x | s
1 Allamakee 40 11 103 42 14 $ 87 297
2 Bremer 36 13 102 68 30 133 372
3 Butler 34 19 137 53 30 174 447
4 Calhoun 41 33 160 49 39 286 607
5 Carroll 39 25 157 74 33 263 591
6 Cherokee 42 23 166 85 34 274 624
17 Dallas 40 22 130 52 37 235 516
8 Da 31 119 20 20 104 303
Fayette 36 13 106 53 27 141 376
10 mon 34 17 137 59 40 208 495
11 Howard 30 18 136 40 19 116 358
12 a 40 23 185 95 31 2n 645
13 Jefferson 37 14 98 41 25 163 378
14 Johnson 41 13 122 80 28 193 477
15 Kossuth 38 24 173 52 31 203 521
16 Lyon 38 31 182 7 35 279 636
17 Madison 34 16 124 43 26 179 422
18 Marshall 45 19 138 60 34 244 6540
19 Monona 34 20 148 52 30 166 449
20 Pocahontas 40 30 164 49 38 257 578
21 Polk 41 22 96 39 35 252 485
22 Story 42 21 132 54 41 280 570
23 Wapello 35 16 96 41 23 167 378
24 ‘Warren 33 18 118 38 24 168 399
25 Winneshiek 36 18 113 61 21 115 364

First, calculate the r’s, then the 8’s, and from these, R and the
regression equation. However, with more than three variables,
it 18 desirable to adopt some labor saving, systematizing and ac-
curacy promoting devices, and these will now be explained.

The first of these devices is the introduction of an extra vari-
able, S, whose values are shown in the last column of Table 6.
Each number in this column is merely the sum (hence, S) of the
corresponding numbers of the other columns; thus, for Alla-
makee county,

S =40+ 11 4 103 4 42 + 14 487 =297

The sums, S, are handled exactly like values of a seventh variable.
The relatively small amount of extra labor involved in handling
S furnishes a perfect check on the accuracy of the calculations,
and obviates the necessity of repeating them. The details of the
use of S will be given in the proper places below.

THE SIMPLE CORRELATION COEFFICIENTS

The second of the new devices is merely a form (Tables 7a
and Tb) for systematizing the method of caleculating the r’s
and the ¢’s. (See mimeograph bulletin by Bradford B. Smith,
‘“The Use of Punched Card Tabulating Equipment in Multiple
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35,119 4 18,290 - 125,258 -} ete. — 443,313
For line E, (and column E),

27,923 -+ 14,542 -+ 99,592 -+ 40,558 +
22,201 -+ 147,659 = 352,474

Each number in line A, is subtracted from the number just
above it in line A,, the results appearing in line A;. The same
relations obtain in lower parts of the tables. It happens in this
problem that all these differences are positive; but in another
problem the lower number might in some places be larger, in
which case the difference would be negative. This would result
in a negative correlation coefficient. The check in lines with
subseripts 3 is the same as before, and is the final check on this
part of the calculation. With skillful calculators, either or both
the preceding checks may be omitted, but this last one is essen-
tial.

The number of significant figures to which the results check
depends, of course, upon the number of figures carried in the
means. In the illustrative problem, since the number of obser-
vations is 25, the means are made arithmetically exact by carry-
ing only two decimal places. In another problem, however, if it
is desired to check results to seven significant figures (as is done
in this problem) seven figures would have to be carried in the
means and even then the last figures would not usually check, as
is the case in the last two numbers of the illustrative problem.
Of course, the extra figures have no statistical significance, and
their use would in any case be merely a matter of office practice.
So far as statistical significance is concerned, all the numbers
used in this problem might have been limited to the first three,
or at most four figures.

The first number in line A, (18.493) is the square root of the
number just above it (342) ; and similarly, for the first numbers
in lines B, ete. Each of these square roots when divided by the
square root of the number of observations (in our problem 1/25)
gives the corresponding standard deviation ¢ in the bottom row
of the table.

The remaining numbers in lines A,, B,, ete., are products of two
square roots, namely the first square root in the same line by the
last squave root in the same column. For example, the number
(1,036.3) in line B, column E is the product of 29.866 (line
B, column B) by 34.699 (line E, column E).

The correlation coefficients of A with each of the remaining
variables (not including S) are calculated by dividing each
number in line A; (not including ecolumn A) by the number just
below it. As an example, from column E,
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338
Tap = ——=.5267
641.7

As an example of the similar use of later rows, consider rows
C; and C,, column X ; from these we obtain,

26,355

40,989

THE NORMAL EQUATIONS

In order to record the r’s and use them for calculating the
B’s in the simplest way, we now turn to a consideration of Tables
8a and 8b. Here, as its value is calculated, each r is recorded
in the row and column corresponding to its subseripts. The ex-
act position of each r is clearly indicated in Table 8a. Observe
that r,a=1.0000, rps=—1.0000, etc. These tables exhibit the
third and last of the new devices to be considered in this part.
This device is a short scheme for obtaining the solution of the nor-
mal equations, a set of simultaneous, linear equations having the
same number of ‘‘unknowns’’ (five in our illustrative problem)
as there are independent variables. The unknowns in these nor-
mal equations are the partial regression coefficients, Bxa, Bxs,

Bxc, ete.
‘Written out in full, these five normal equations appear thus:

Bxa -|- TasBxs + TacBxc -|- TanBxp + TaeBxe = Iax
TeaBxa + Bxs —I- TecBxc —I- T'spfBxp + reeBxe = I'ex
rcaBxa -+ reeBxe +  Bxc + reoBxp -+ reefxe =Trcx
TpaPBxa + ToeBxe + I'ocPxc + Bxp + TpeBxe = Irox
TeABxa + TesBxs -|- TecBxc + TepBxp + Bxe = TEx

(See Kelley: ‘‘Statistical Method’’, p. 296.)

It will be observed that there is a diagonal row of B’s through
this array of equations, from the upper left to the lower right
corner, each of whose coefficients is unity. If, now, we remem-
ber that rap = rpa, Tac = Tca, I'ce = I'rc, ete., it can be seen that
the r’s in the upper right hand part of the array and the equal
r’s in the lower left hand part are arranged symmetrically with
respect to the diagonal of unity coefficients. It is for this reason
that short methods of solution ecan be used, and that we need
keep only that portion of the equations above and to the right of
the diagonal, together with the ‘‘1’s’’ in the diagonal itself. Fin-
ally, it is unnecessary to record the B’s, since only the r’s are
required for caleculation. Thus we get the arrangement of the
r’s in tables 8a and 8b. The directions to be given for manipu-
lations in these tables have as their objective the solution of the
normal equations, giving finally the values of the 8’s. For an

=.6430

er =
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extensive explanation of the whole process, see Wright and Hay-
ford: ‘‘Adjustment of Observations’’, pp. 114-120.

Most of the details of manipulation can be understood by study
of the directions given in the tables themselves, and comparison
of the two tables. Each symbol in Table 8a stands for what-
ever number might be entered in the corresponding cell in any
particular problem. Thus, in our problem, r,c (line 1, column
C) stands for the number, .2536; [bb] (line 5, column B)
stands for .8281; [dx] (line 17, column X) stands for — .1199;
and — [dx] (line 2 of reverse, column X) stands for .1199.
Some statements of general principles will help the operator to
carry the details in mind.

First. Each block of lines is narrower by one column than
the preceding block, and after the B-block each block of lines
is one line wider than the preceding block. If there were an F
variable, the F-block would contain 8 lines (25 to 32 inclusive)
and so on for any number of variables.

Second. Beginning with the B-block, the next to the last line
in each block (lines 5, 10, 16, etc.) consists of the algebraic sums
of all the entries above it in the same block. Thus in Table 8b
the number (.8281) in line 5, ecolumn B, is equal to 1 — .1719,
and the number (.0402) in line 16, column E, is equal to

.3824 — 2631 — .0741 — .0050

Third. The sums in the next-to-the-last line of each block
(lines 5, 10, 16, 23) are each to be divided by the first such sum
in the same block, the signs reversed, and the quotients entered
just below the dividends. Thus, in line 10 the divisor is .4307;
the dividends are .4307, .3385, .0063, .0633 and .8388; and the
quotients with signs changed appearing in line 11 are — 1.0000,
— .7859, — .0146, — .1470 and — 1.9475.

Fourth. Each of the remaining lines in any block consists
of products calculated from one of the preceding blocks. Thus, .
in block D the produets in line 13 are calculated from the A-
block, those in line 14 from the B-block and those in line 15 from
the C-block. To illustrate from Table 8b, consider the products
i?l line 14, block D. These products come from the B-block,
thus:

Line D E X S
Multiplicands 5 1343 | 4571 5232 2.5894
Multiplier 6 | —.1622 |

Products | 14 | —.0218 | —.0741 | —.0849 | — .4200
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Fifth. The last line in each block contains the coefficients with
signs reversed of an equation from which some of the unknown
B’s have been eliminated. Thus, from line 17 we may infer that

1.00008xp + .08698xg = .1199
Similarly from line 24,
Bxg — .4547

which is, therefore, the first one of the 8’s whose value is found
after all the rest of them have been eliminated from the equa-
tions.

Sixth. The S-column furnishes a check on the aceuracy of the
work in each block, but does not check the calculations of the
r’s. The entries in the S-column are not carried over from Table
7. That in line 1 is simply the sum of the r’s to the left of it in
the same line; that is,

1.0000 - .4146 - .2536 - .4995 | .5267 - .6747 = 3.3691

The entry in line 3, column S is likewise the sum of five r’s ar-
ranged in the same ‘‘down and across’’ manner as used in Table
7b; thus, going down column B and across line 3, we have

4146 + 1.0000 + .7518 | .3414 + .6755 | .8029 = 3.9862

As a final illustration_ consider the entry in line 12, column S.
Down column D and across line 12,

4995 - 3414 -+ 5701 -+ 1.0000 -+ .3824 - 5271 = 3.3205

After the entries are made in column S, they are treated ex-
actly like the original entries in the other columns. (See Table
8a, column S.) The check is furnished in the last line of each
block. The number in the S column of that line should be (ap-
proximately) equal to the sum of the numbers to the left of it in
the same line (not down and across). Consider, for example,
line 11,

— 1.0000 — .7859 — .0146 — .1470 = — 1.9475

Seventh. The ‘‘Reverse’’ (bottom five lines of tables 8a and
8b) is the process of finding the values of the preceding 8’s by
retracing our steps, equation by equation. Some of the details
will now have to be explained, as follows:

(1) In column X, copy in reverse order with sign changed the
last number (in the same column) in each block above. This ig
clearly indicated in Table 8a, column X of the reverse.

(2) In line 1, column E, copy the value of Bxg, which in oun
problem is .4547. The two numbers in reverse, line 1, are al
ways the same. ,

(3) In column E, below Bxg, enter in reverse order the prodl
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ucts of Bxg by the last number appearing in that column in each
of the blocks above the E-block. For example, — .0395 = .4547
X — .0869, and — .0066 = .4547 X — .0146.

(4) In reverse line 2, add (algebraically) the numbers in
columns X and E (.1199 — .0395), placing the sum (.0804) in
the same line, column D. This sum is the value of Bxp. It may
easily be seen that the operations in reverse line 2 result in the
substitution of the value of Bxg in an equation mentioned above,

namely
1.00008xp + .08698xe = .1199

and also in its solution for the value of Bxp;
Bxp=.1199 — (.0869 X .4547) =.1199 — .0395 = .0804

(5) Repeat in column D the operations just described, using
as multiplier the value of Bxp (.0804). We now compute in
reverse line 3,

Bxc=.1470 — .0066 — .0632 = .0772

‘What we have really done in reverse line 3 is to substitute the
values of Bxe and Bxp in an equation inferred from line 11 above,
as follows:

IOOOOﬁxc + 7859an + .0146BXE == .1470

and solve the resulting equation for B8xc.

Continue this reverse process until all the 8’s have been cal-
culated, then verify the results by substituting their values in
some one of the original normal equations. For example, read-
ing down column D to line 12, then along line 12, we infer the
equation,

499585 -+ .34148xs -+ .57018xc -+ 1.00008xp -+ .38248xe—.5271

Substituting the values of the B8’s in the left member of this
equation it becomes,

(.4995 X .2479) -+ (.3414 X .3075) -+ (.5701 X .0772)
+ (.0804) - (.3824 X .4547)

Without clearing the machine, we compute the sum of these
products as .5271, thus verifying the correctness of the B8’s in
the equation above. For verification purposes, any of the orig-
inal normal equations may be used except the first (line 1),
which has already been made use of (reverse, line 5) for caleu-
lating the value of Bxa.

THE MULTIPLE CORRELATION COEFFICIENT

_ We are now ready to calculate the multiple correlation coeffi-
cient, R, from the equation
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R?=Bxa - rax 4 Bxs - I'sx + ete.,

= (.2479 )X .6747) + (.3075 X .8029) -+ (.0772 X .6430)
(10804 X .5271) (14547 X .8621)

The machine gives directly the sum of these products as .8982.
The factors are readily found in Table 8b; and after a little
practice the multiplications and additions may be ecarried
through on the machine without making such a list as that given
in the equation above, without clearing the machine. Finally,
R=1.8982=.95
THE STANDARD ERROR OF ESTIMATE
This value of R shows that if we attempt to estimate land

values from these five independent variables, the standard error
of estimate will be

OX.ABCDE — OX v 1—R2= .3190’}( or 31.9% of oX.

That is,
ox.ascoe = .319 X $61.23 = $19.53

Thus, we have reduced the original standard deviation by 68.1%.
In Part II, we found that by using two independent variables
we could reduce the original standard deviation by only 53.7%.
The addition of three more independent variables is therefore of
real value. On the other hand, the fact that the standard error
of estimate is still 31.9% of ox shows that the problem is not
completely solved. There are other influences on the price of
land which have not been considered, and it is the search for
these that will engage the interest of the student of economics.

THE REGRESSION EQUATION
The regression equation with five independent variables is

_ ox ox
X=Mx+ﬁ“ (A—MA)'I—BXB‘ (B—MB)-I—etc.
OA oB
‘With our data, this becomes
61.23 61.23

X =198.20 + 2479 X —— (A — 37.48) -+ .3075 X ——
3.70 5.97

61.23
(B —19.52) 4 .0772 XX ——(C — 133.68) 4 .0804
26.78

61.23 61.23
X ——(D — 54.44) + 4547 XX —— (E — 29.80)
16.28 6.94

bdh
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TABLE 9. LAND VALUE ESTIMATED FROM FIVE VARIABLES

Average Estimated Error of
County land value land value Estimate
per acre per acre
Allamakee $ 87 $109 —22
Bremer 133 168 —36
Butler 174 183 —9
Calhoun 286 295 —10
Carroll 263 245 18
Cherokee 274 260 14
Dallas 235 244 —9
Davis 104 86 18
Fayette 141 156 —14
Fremont 208 219 —11
Howard 115 115 e
Ida 271 246 25
Jefferson 163 149 14
Johnson 193 191 2
Kossuth 203 225 —22
Lyon 279 271 8
Madison 179 152 27
Marshall 244 247 —3
Monona 165 188 —23
Pocahontas 257 278 —21
Polk 252 230 22
Story 280 266 14
‘Wapello 167 139 28
‘Warren 168 144 24
Winneshiek 115 150 —35

X =4.103A + 3.154B -+ .1766C - .3022D + 4.012E — 176.76

Using this equation, we calculate the land values shown in Table

It should be observed that in this problem where all the 8’s
are positive, the land value of any one county is found by adding
five products and subtracting $176.76. This should be done, as
usual, without clearing the machine. In this way, the estimated
values for all the counties can be found in a short time. If part
of the B’s were negative, their terms should be subtracted in-
stead of added. This is done in the crank driven machine by
turning the crank backward (subtracting) instead of forward.
{)n thedkey driven machine, the ‘‘complementary’’ number must

e used.

If we compare our latest errors of estimate with those made
on the basis of two independent variables, we find notable im-
provement in the cases of Allamakee, Calhoun, Fremont, How-
ard, Story and Winneshiek eounties, but much poorer estimates
for Bremer and Wapello. Land values in nine more of the
twenty-five counties are not estimated so well with these five
independent variables as with two, but the changes are rela-
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tively insignificant. This strengthens our previous conclusion
that the student of economics has still a long way to go before
he finds all the factors that are highly associated with land
values.

SCORING

The regression equation is the best scoring device available,
the ‘‘score’’ of any individual being the value of the criterion,
X, calculated from a given set of values of the independent
variables. In this sense, the estimated land values found in the
second column of Table 9 constitute the scores of the correspond-
ing counties on the basis of land value.

There are times, however, when a simpler scoring device is de-
sirable. While there is no general agreement on the subject, the
partial regression coefficients probably constitute the simplest
and most straightforward data for making a score card. In the
table below is entered the value of each 8 in our land value
problem, and just beneath it is placed a rate percent. Each
rate percent is found by dividing the corresponding B8 by the
sum (1.1677) of the five B’s.

SCORE CARD

Corn | Small I}ll'g;’- Brood | Corn Sum.

Yield | Grain | ed Sows | Land
Laua

Coefficients || .2479 | .3075 | .0772 | .0804 | .4547 || 1.1677

Rate Percents
or Scores 21 26 7 7 39 100

If the counties of Iowa are to be scored on the basis of the
data in Table 6, it thus appears that 39% of the score should
be based on the percentage of farm land in corn, 26% on per-
centage of farm land in small grain, 21% on corn yield in bush-
els per acre, and 7% each on number of acres of improved
land per farm and number of brood sows per 1,000 acres.

PART IV. PARTIAL CORRELATION COEFFICIENTS

In partial correlation coefficients, the attempt is made to de-
termine the degree of association that would exist between two
variables if we could eliminate the effects of their common asso-
ciations with other variables. For example, consider the correla-
tion coefficient .38 between the number of brood sows per 1,000
acres (D) and the percentage of farm land in corn (E) in the
25 counties which have been used as an illustration.
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This is a statistically significant positive correlation, as shown
by the fact that .38 is 2.23 times its own standard deviation. (We
may determine from a table of the probability integral, such as
Pearson’s ‘‘Tables for Statisticians and Biometricians’’, Table
II; or Pearl and Miner’s table published as Table No. 40 in
Pearl’s ‘‘Medical Biometry and Statistics’’, the likelihood that
nearly 99% of the correlation ratios calculated from similarly
selected data would be greater than zero.)

The question arises, is rpg = .38 because of some underlying
relation between these variables, or merely because each of them
is intimately associated with some other variable, such as price
per acre of land (X)? We seek an answer in the ‘‘partial
correlation coefficient between E and D independent of X’,
which we shall denote by the symbol rpe.x. The formula is

Tpe — Ipx X Tex

\/1 —I‘sz \/ 1 ——l‘nx2

TpE.x =

In our example
.38 — .53 X .86

—.19

TpE.x =

V1—(.53)* V1— (.86)2 N

This means that if we could eliminate the common association of
variables D and E with X, there would actually remain a small
negative correlation between D and E; that is, independent of
their common association with land value, there is a very slight
tendency for large numbers of brood sows per 1,000 acres to be
associated with small percentages of farm land in corn and vice
versa.

In order to make clear the meaning of the partial correlation
coefficient, we shall give two explanations as follows:

First. Imagine the number of counties in our problem in-
creased to some large number such as a thousand, with no change
in the simple and partial correlations discussed above. Con-
sider a group of counties whose land values all lie in some such
small interval as from $250 to $260 per acre. There might be 25
or more counties in such a group, and for practical purposes we
could consider their land values to be the same. We could then
calculate rpg for this group, thus determining the degree of
association between the number of brood sows per 1,000 acres
and percentage of land in corn in counties having a common land
value. This could be done for each other small group having
a common land value. Then it may be said that the partial
correlation coefficient rpe.x would be a kind of average of all
the simple correlation coefficients so obtained. For an illustra-
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tion of this, see Pearl’s ‘‘Medical Biometry and Statisties’’, pp.
322-25.

Second. In the three variable problem considered above, in-
volving D, E and X, let us consider the estimation first of D from
X, then of E from X. The two regression equations are written

—_— op
D =My + rox (X — Mx),
ox '
— oB
and E=Mg + rex (X — Mx),
ox

as explained in Part I. After the values of D and E are calcu-
lated for each value of X, two groups of errors of estimate can
be computed, (D — D) and@ (E — E). If these errors of esti-
mate are arranged in pairs, one pair for each value of X, then
it may be proved that the partial correlation coefficient rpg.x is
equal to the simple correlation coefficient between these pairs of
errors of estimate. (See Kelley’s ‘‘Statistical Method’’, pages
284-287.)

The explanations given above may be extended to partizal corre-
lation coefficients of higher orders. Thus, if we first calculate
as above

I'pg.x — — .19, TAD.x = .22, TAE-X — — 13

we may then find the partial correlation coefficient between D
and E independent of both corn yield per acre (A) and land
value (X) by means of the formula

Tpe.x —(Tap.x) (Taex)

TpE.AX =—

V 1 —ra.x® V1—raex’
—.19— (22) (—.13)

VI (@m vy I (—D)°
=—.17

According to the first explanation given above, this means that
for groups having corn yields per acre the same, as well as land
values the same, the average simple correlation between brood
sows per 1,000 acres and percentage of land in corn would be
negative ( — .17), but not highly significant statistically. Aec-
cording to the second explanation, — .17 is the simple correla-
tion coefficient between two series of errors of estimate: the first

being the errors of estimate, (D — D), made when we estimate
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values of D from given values of A and X (Part II); and the

second (E — E), made when we estimate values of E from the
same given values of A and X.

1t is obvious from the foregoing that the caleulations involved
in multiple eorrelation though extensive are simple in form. A
table giving values of (1 — r?) or V' 1 — r? for various values of
r is highly desirable. John Rice Miner has calculated such tables.
Publishers, John Hopkins Press. The calculations are quickly
performed either with a machine or by means of a slide rule.

In most cases, however, a relatively brief extension of the cal-
culations described in Part III will yield all the partial regression
coefficients that are desired; namely, those of highest order giv-
ing the correlations between the criterion and the several inde-
pendent variables. For example, in our six variable problem,
we may wish the partial correlation coefficient between percent-
age of land in eorn (E) and land value (X) independent of the
other four variables. The symbol is rgx.apco. Its value can, of
course, be obtained by building up the partials of lower orders
according to the formulas already given, but the quicker method
will now be explained.

If in Table 8b we should interchange the two columns E and
X, as is done in Table 10, and make the necessary re-calculations
in the last block (which is now the X-block), the last number in
column E (line 24) with sign changed (1.0706) is easily seen to
be the partial regression coefficient, Bgx. This is the coefficient
that would be used in the regression equation if we were con-
sidering E as the dependent variable, and estimating E from X
and the remaining four variables. Bxg (calculated in Part III)
and Bgx are called ‘‘conjugate regression coefficients’’. We may
now use the formula

Tex-asco = V Bxe Y Bex

=/ 4547 ) 1.0706
=.6977

It has already been explained that the notation used for the
B’s in a six variable problem is quite inadequate. It should be
observed that the complete notation for the above equation is

Tex.asco = V Bxe-ascp X Bex-anco.

1f we wish to calculate rpx.apce we must have Bpx in addition to
the Bxp previously calculated. To get Spx we may interchange
columns D and E in Table 10 with the corresponding change in
block letters, and make the necessary re-calculations as in Table
11. The last number now appearing in column D (line 24) with
gign changed (.3511) is Bpx. Then

TDX.ABCE = \/ .0§64 X .3511 =.1679
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Continuing as above, successively interchanging columns and
blocks C and D, B and C and finally A and B from their position
in Table 11 and doing the increasingly greater amount of ealeu-
lation each time, we obtain successively Bcx = .2041, Bpx = .6399
and Bax=.9822. From these and their previously calculated
conjugates we obtain

Tcx-appe = .1253, rax.acoe = .4436, Tax.scpz = .4936

The amount of additional work is not great, and the information
obtained may be of great importance.

We reach the conclusion in our illustrative problem that land
value (X) is more highly correlated with percentage of land in
corn (E), independent of the associations of E and X with the
other four variables, than it is with any of the other variables
which we have considered. TkLis is the same conclusion, though
with somewhat different quantitative relations, that was deduced
from the partial regression coefficients and the regression equa-
tion worked out in Part III.

If the investigator does not care for the simple (zero order)
correlation coefficients (Table 7), but wishes only the highest
order partial correlation coefficients, together with the multiple
regression equation, he may avoid the caleulation of the r’s and
proceed directly to the solution of the normal equations using
only the product-moments as the necessarv data. See Tolley
and Ezekiel, ‘‘ A Method of Handling Multiple Correlation Prob-
lems’’, Quar. Pub. Am. Statistical Asso., Dec. 1923.

We shall close this part by returning to the problem first con-
sidered ; namely, the correlation between number of brood sows
per 1,000 acres (D) and percentage of land in ecorn (E); but
now we shall find what it would be independent of all tke other
variables. The SymbOI 1s I'DE.ABCX.

This may be found by continuing the process first deseribed,
calculating in all ten partial correlation coefficients of first order
(such as rpe.x), six of second order (such as rpg.ax), three of the
third order (such as rpg.apx) and finally the one required.

The alternative is to caleulate Bpe and Bep as in Part IIT and
take the square root of their produet. This is very easily done.
Simply return to Tables 10 and 11 and compute the reverse as
far as line 2 in each table. Then read from reverse line 2, column
D, in Table 10 the result, Bpp=— — .0415, and in Table 11
Bor == — .0763. It is obvious that the amount of new calculation
is trivial. Not only have we obtained the required 8’s, but we
also have an illustration of the important fact that fwo conju-
gate regression coefficients such as these must always have the
same stgn, either both positive or both negative. Furthermore,
the corresponding partial correlation coefficient takes the same
sign as the two B’s have. Hence, finally
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e avoided? Should the relationship be expressed by a curved
egression line rather than by one which is straight? Is it nee-
ssary to include other variables to account for the discrepancies?
emember, it is not impossible that important diseoveries can
e initiated by first learning that expected correlation does not
eally exist. On the other hand, do not be too easily satisfied.
t would be a shortsighted policy to stop with a correlation co-
fficient of .96 when a more perfect explanation might be readily
pparent after a little further work.

If the number of independent variables is large and the num-
er of observations relatively small, the multiple correlation co-
flicient seems to gather a certain amount of ‘‘fictitious correla-
ion’’ merely from the multiplication of the number of variables.
. B. Smith has a correction formula to be used in such cases.
his is expected to appear in the March, 1925, issue of the
ournal of the American Statistical Society.

The formula is

1—R?
(Corrected R?) =1 —
M
1 ——
N

here M is the number of independent variables and N is the
umber of observations.

‘What is the real objeet of correlation coefficients and their
elated concepts? The details vary with the ficld of investiga-
ion, with the particular problem in hand, and with the mental
eculiarities of the investigator. The purely scientific effort to
etermine causal relations, the prediction of market prices, voca-
ional guidance, educational policies, the correct method of seor-
g corn, heredity, land values, the correction of yields for soil
ariation,—these are some of the problems attacked with corre-
tion methods. The research worker must always interpret his
esults in the light of his own knowledge. After all, correlation
simply one scheme for discovering and evaluating relationship.
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